Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482820

RESUMO

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Tioglicolatos , Triazóis , Humanos , Ácido Úrico/uso terapêutico , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Uricosúricos/uso terapêutico , Pirimidinas/toxicidade , Pirimidinas/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Transporte de Cátions Orgânicos
2.
Toxicol In Vitro ; 95: 105754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061604

RESUMO

In this study, we aimed to analyze the effects of first and second-generation Bcr-Abl tyrosine kinase inhibitors, imatinib and nilotinib on LPS/IFN gamma activated RAW 264.7 macrophages. Our data revealed that imatinib was less effective on nitrite levels and more toxic on macrophages compared to nilotinib. Therefore, we further analysed the effect of nilotinib on various inflammatory markers including iNOS, COX-2, NFkB, IL-6, p-ERK, p-p38 and p-JNK in LPS/IFN gamma activated RAW264.7 macrophages. Spectrophotometric viability test and Griess assay,western blot, RT-PCR and luciferase reporter assays were used to analyze the biological activity of nilotinib. Our findings revealed that nilotinib decreases nitrite levels, iNOS mRNA, iNOS and p-p38 protein expressions significantly whereas induces IL-6 mRNA and p-JNK protein expressions at particular doses. We did not find significant effect of nilotinib on COX-2, p-ERK and nuclear p65 proteins and NFkB transcriptional activity. In addition, the binding mode of nilotinib to iNOS protein was predicted by molecular docking. According to the docking analyses, nilotinib exhibited hydrophobic interactions between MET349, ALA191, VAL346, PHE363, TYR367, MET368, CYS194, TRP366 residues at the binding pocket and the molecule as well as van der Waals interactions at specific residues. In conclusion, our results reveal that, in addition to its anticancer activity, nilotinib can exhibit immune modulatory effects on macrophages through its effects on iNOS, IL-6, p-p38 and p-JNK.


Assuntos
Lipopolissacarídeos , Nitritos , Mesilato de Imatinib/farmacologia , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Nitritos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Macrófagos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Pirimidinas/toxicidade , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835302

RESUMO

Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 µM), DAS (≥0.006 µM), and REG (≥0.8 µM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.


Assuntos
Antineoplásicos , Hepatócitos , Animais , Humanos , Antineoplásicos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado , Pirimidinas/toxicidade , Sorafenibe/toxicidade , Peixe-Zebra
4.
Toxicol Lett ; 367: 48-58, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868497

RESUMO

Sarin was used as a chemical weapon due to its high neurotoxicity and mortality. Subacute sarin induced cognitive and behavioral disorder. However, the underlying mechanism is still unclear. Here we offered a multi-omic approach for the analysis of altered metabolites, lipids, and proteins to explore the neurotoxicity of subacute sarin. Guinea pigs were administered between the shoulder blades 16.8 µg/kg of sarin in a volume of 1.0 ml/kg body weight by subcutaneous injection once daily for 14 days. At the end of the final injection, guinea pigs were sacrificed, and striatum were dissected for analysis. A total of 138 different metabolites were identified in the metabolome analysis. Lipids and lipid-like molecules is the largest group (38.41%). For lipidomic analysis, a total of 216 lipids were identified. In proteomic study, over 4300 proteins were identified and quantified. By integrating these enriched components, we demonstrated that the joint pathways disturbed by subacute sarin mainly involving lipid, purine and pyrimidine metabolism in guinea pig striatum. Overall, this study highlights the powerfulness of omics platforms to deepen the understanding of nerve agents caused neurotoxicity.


Assuntos
Substâncias para a Guerra Química , Síndromes Neurotóxicas , Animais , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Cobaias , Homeostase , Dose Letal Mediana , Lipidômica , Lipídeos , Síndromes Neurotóxicas/metabolismo , Proteômica , Purinas , Pirimidinas/toxicidade , Sarina/toxicidade
5.
J Med Chem ; 65(4): 3229-3248, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35138851

RESUMO

Herein, we report two promising compounds 30 and 36 possessing nanomolar FLT3 inhibitory activities (IC50 = 1.5-7.2 nM), high selectivity over c-KIT (>1000-fold), and excellent anti-AML activity (MV4-11 IC50 = 0.8-3.2 nM). Furthermore, these two compounds efficiently inhibited the growth of multiple mutant BaF3 cells expressing FLT3-ITD, FLT3-D835V/F, FLT3-F691L, FLT3-ITD-F691L, and FLT3-ITD-D835Y. Oral administration of 30 and 36 at 6 mg/kg/d could significantly suppress tumor growth in the MV4-11 cell-inoculated xenograft model, exhibiting tumor growth inhibitory rates of 83.5% and 95.1%, respectively. Importantly, 36 could prolong the mouse survival time in the FLT3-ITD-TKD dual mutation syngeneic mouse model (BaF3-FLT3-ITD-D835Y) at a dose of 6 mg/kg p.o. bid/4W. No clear myelosuppression was observed in the treated group of 36 in the MPO strain of zebrafish, even at 10 µM. In summary, our data demonstrated that 36 may represent a promising candidate for the treatment of FLT3 mutant AML.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Relação Dose-Resposta a Droga , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
6.
J Med Chem ; 65(3): 2471-2496, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077178

RESUMO

Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Pirimidinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Ratos , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Tiofenos/toxicidade
7.
J Pharmacol Exp Ther ; 380(2): 114-125, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794962

RESUMO

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.


Assuntos
Antineoplásicos/toxicidade , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dasatinibe/toxicidade , Hepatócitos/metabolismo , Humanos , Indazóis/toxicidade , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Pirimidinas/toxicidade , Sorafenibe/toxicidade , Sulfonamidas/toxicidade , Simportadores/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830376

RESUMO

Fungicides often cause genotoxic stress and neurodevelopmental disorders such as autism (ASD). Fungicide-azoxystrobin (AZOX) showed acute and chronic toxicity to various organisms, and remained a concern for ill effects in developing neurons. We evaluated the neurotoxicity of AZOX in developing mouse brains, and observed prenatal exposure to AZOX reduced neuronal viability, neurite outgrowth, and cortical migration process in developing brains. The 50% inhibitory concentration (IC50) of AZOX for acute (24 h) and chronic (7 days) exposures were 30 and 10 µM, respectively. Loss in viability was due to the accumulation of reactive oxygen species (ROS), and inhibited neurite outgrowth was due to the deactivation of mTORC1 kinase activity. Pretreatment with ROS scavenger- N-acetylcysteine (NAC) reserved the viability loss and forced activation of mTORC1 kinase revived the neurite outgrowth in AZOX treated neurons. Intra-amniotic injection of AZOX coupled with in utero electroporation of GFP-labelled plasmid in E15.5 mouse was performed and 20 mg/kg AZOX inhibited radial neuronal migration. Moreover, the accumulation of mitochondria was significantly reduced in AZOX treated primary neurons, indicative of mitochondrial deactivation and induction of apoptosis, which was quantified by Bcl2/Bax ratio and caspase 3 cleavage assay. This study elucidated the neurotoxicity of AZOX and explained the possible cure from it.


Assuntos
Apoptose/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pirimidinas/farmacologia , Estrobilurinas/farmacologia , Acetilcisteína/farmacologia , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fungicidas Industriais/toxicidade , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Pirimidinas/toxicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Estrobilurinas/toxicidade
9.
J Med Chem ; 64(16): 11857-11885, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34374541

RESUMO

Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.


Assuntos
Anti-Inflamatórios/uso terapêutico , Catepsina C/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pirimidinas/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Catepsina C/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Inflamação/etiologia , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/toxicidade , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
Int J Toxicol ; 40(5): 427-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137282

RESUMO

Sotorasib is a first-in-class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. A comprehensive nonclinical safety assessment package, including secondary/safety pharmacology and toxicology studies, was conducted to support the marketing application for sotorasib. Sotorasib was negative in a battery of genotoxicity assays and negative in an in vitro phototoxicity assay. Based on in vitro assays, sotorasib had no off-target effects against various receptors, enzymes (including numerous kinases), ion channels, or transporters. Consistent with the tumor-specific target distribution (ie, KRASG12C), there were no primary pharmacology-related on-target effects identified. The kidney was identified as a target organ in the rat but not the dog. Renal toxicity in the rat was characterized by tubular degeneration and necrosis restricted to a specific region suggesting that the toxicity was attributed to the local formation of a putative toxic reactive metabolite. In the 3-month dog study, adaptive changes of hepatocellular hypertrophy due to drug metabolizing enzyme induction were observed in the liver that was associated with secondary effects in the pituitary and thyroid gland. Sotorasib was not teratogenic and had no direct effect on embryo-fetal development in the rat or rabbit. Human, dog, and rat circulating metabolites, M24, M10, and M18, raised no clinically relevant safety concerns based on the general toxicology studies, primary/secondary pharmacology screening, an in vitro human ether-à-go-go-related gene assay, or mutagenicity assessment. Overall, the results of the nonclinical safety program support a high benefit/risk ratio of sotorasib for the treatment of patients with KRAS p.G12C-mutated tumors.


Assuntos
Antineoplásicos/toxicidade , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia
11.
Toxicol Appl Pharmacol ; 423: 115578, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004237

RESUMO

Sotorasib is a first-in class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. In the nonclinical toxicology studies of sotorasib, the kidney was identified as a target organ of toxicity in the rat but not the dog. Renal toxicity was characterized by degeneration and necrosis of the proximal tubular epithelium localized to the outer stripe of the outer medulla (OSOM), which suggested that renal metabolism was involved. Here, we describe an in vivo mechanistic rat study designed to investigate the time course of the renal toxicity and sotorasib metabolites. Renal toxicity was dose- and time-dependent, restricted to the OSOM, and the morphologic features progressed from vacuolation and necrosis to regeneration of tubular epithelium. The renal toxicity correlated with increases in renal biomarkers of tubular injury. Using mass spectrometry and matrix-assisted laser desorption/ionization, a strong temporal and spatial association between renal toxicity and mercapturate pathway metabolites was observed. The rat is reported to be particularly susceptible to the formation of nephrotoxic metabolites via this pathway. Taken together, the data presented here and the literature support the hypothesis that sotorasib-related renal toxicity is mediated by a toxic metabolite derived from the mercapturate and ß-lyase pathway. Our understanding of the etiology of the rat specific renal toxicity informs the translational risk assessment for patients.


Assuntos
Acetilcisteína/metabolismo , Injúria Renal Aguda/metabolismo , Piperazinas/metabolismo , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/metabolismo , Piridinas/toxicidade , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
12.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800013

RESUMO

With the emergence and global spread of the COVID-19 pandemic, the scientific community worldwide has focused on search for new therapeutic strategies against this disease. One such critical approach is targeting proteins such as helicases that regulate most of the SARS-CoV-2 RNA metabolism. The purpose of the current study was to predict a library of phytochemicals derived from diverse plant families with high binding affinity to SARS-CoV-2 helicase (Nsp13) enzyme. High throughput virtual screening of the Medicinal Plant Database for Drug Design (MPD3) database was performed on SARS-CoV-2 helicase using AutoDock Vina. Nilotinib, with a docking value of -9.6 kcal/mol, was chosen as a reference molecule. A compound (PubChem CID: 110143421, ZINC database ID: ZINC257223845, eMolecules: 43290531) was screened as the best binder (binding energy of -10.2 kcal/mol on average) to the enzyme by using repeated docking runs in the screening process. On inspection, the compound was disclosed to show different binding sites of the triangular pockets collectively formed by Rec1A, Rec2A, and 1B domains and a stalk domain at the base. The molecule is often bound to the ATP binding site (referred to as binding site 2) of the helicase enzyme. The compound was further discovered to fulfill drug-likeness and lead-likeness criteria, have good physicochemical and pharmacokinetics properties, and to be non-toxic. Molecular dynamic simulation analysis of the control/lead compound complexes demonstrated the formation of stable complexes with good intermolecular binding affinity. Lastly, affirmation of the docking simulation studies was accomplished by estimating the binding free energy by MMPB/GBSA technique. Taken together, these findings present further in silco investigation of plant-derived lead compounds to effectively address COVID-19.


Assuntos
Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacocinética , Antivirais/toxicidade , Sítios de Ligação , Disponibilidade Biológica , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Metiltransferases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Plantas Medicinais/química , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , RNA Helicases/química , Relação Estrutura-Atividade , Termodinâmica , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
13.
Cell Death Dis ; 12(3): 273, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723230

RESUMO

Chronic pancreatitis (CP) is characterized by a wide range of irreversible fibro-inflammatory diseases with largely ambiguous pathogenesis. Although neddylation pathway has been implicated in regulating immune responses, whether the dysregulation of neddylation is involved in the progression of CP and how neddylation regulates the inflammatory microenvironment of CP have not yet been reported. Here, we demonstrate that global inactivation of neddylation pathway by MLN4924 significantly exacerbates chronic pancreatitis. The increased M2 macrophage infiltration, mediated by the upregulated chemokine (C-C motif) ligand 5 (CCL5), is responsible for the enhanced pancreatitis-promoting activity of MLN4924. Both CCL5 blockade and macrophage depletion contribute to alleviating pancreatic fibrosis and inflammation in MLN4924-treated CP mice. Mechanistic investigation identifies that inactivation of Cullin-RING ligases (CRLs) stabilizes cellular levels of hypoxia-inducible factor 1α (HIF-1α), which increases CCL5 expression by promoting CCL5 transactivation. Clinically, UBE2M expression remarkably decreases in human CP tissues compared with normal specimens and the levels of CCL5 and M2 marker CD163 are negatively correlated with UBE2M intensity, suggesting that neddylation is involved in the pathogenesis of pancreatitis. Hence, our studies reveal a neddylation-associated immunopathogenesis of chronic pancreatitis and provide new ideas for the disease treatment.


Assuntos
Quimiocina CCL5/metabolismo , Quimiotaxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/metabolismo , Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Linhagem Celular , Quimiocina CCL5/genética , Quimiotaxia/efeitos dos fármacos , Ciclopentanos/toxicidade , Modelos Animais de Doenças , Inibidores Enzimáticos/toxicidade , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Fenótipo , Pirimidinas/toxicidade , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Ubiquitinação
14.
Reproduction ; 161(3): 295-306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428589

RESUMO

Nilotinib is a second-generation tyrosine kinase inhibitor (TKI) that is widely used to treat patients with Philadelphia chromosome-positive chronic myeloid leukaemia (CML). TKIs provided a significant improvement in terms of survival rates and disease-free period in CML; however, there is insufficient knowledge about their side effects, including reproductive toxicity. Since nearly half of the CML patients are in their reproductive age, and newly announced indications cover the treatment of the paediatric age groups, concerns arise about the effects of these drugs on the reproductive system, as there are no controlled preclinical studies. We investigated acute and long-term gonadotoxic and teratogenic effects of nilotinib, utilising a mouse model that simulates various clinical scenarios. We observed significant testicular damage in mice receiving nilotinib according to Johnsen's score analysis. Alterations were observed in female mice's number of follicles, as the primordial follicle numbers significantly decreased. Proliferating cell number in both genders' gonads decreased and apoptosis rate increased significantly. The nilotinib-received female and male mice's pregnancy rates were low compared to controls. A significant decrease in the thickness of the spongiotrophoblast and decidual layers of the placenta was detected in pregnancies consisting of male and/or female mice treated with nilotinib. The results of this study establish a critical point of view for clinical translation and indicate the importance of consulting patients for directing them to fertility preservation and contraception options for both genders before nilotinib treatment.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Pirimidinas , Animais , Apoptose , Criança , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Camundongos , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/toxicidade
15.
Drug Chem Toxicol ; 44(5): 550-557, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32498565

RESUMO

Azoxystrobin is a broad-spectrum fungicide used worldwide. Since azoxystrobin spreads to large areas, its toxic effects on non-target organisms have aroused interest. In this study, the acute toxicity (96 h) of azoxystrobin on the crayfish (Astacus leptodactylus) was examined by using various biomarkers. The 96 h-LC50 dose (1656 mg L-) and its three sub-doses (828, 414, 207 mg L-1) were applied to crayfish. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were increased significantly compared to the control in hepatopancreas, gill and muscle tissues. The activities of acetylcholinesterase (AChE) and glutathione S-transferase (GST) increased, and glutathione reductase (GR) activity decreased significantly in hepatopancreas. Level of reduced glutathione (GSH) decreased significantly. The content of malondialdehyde (MDA) increased in a dose-dependent manner in all azoxystrobin treatments with the exception of the lowest dose (207 mg L-1)treatment. ATPases (Na+/K+ -ATPase, Mg2+ -ATPase, Ca2+ -ATPase, total ATPase) were significantly inhibited in gill and muscle tissues. The results of the present study indicate that azoxystrobin induces oxidative stress, and has adverse effects on activities of AChE and ATPases in crayfish.


Assuntos
Astacoidea/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Fungicidas Industriais/administração & dosagem , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Dose Letal Mediana , Pirimidinas/administração & dosagem , Estrobilurinas/administração & dosagem , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda
16.
Bioorg Chem ; 106: 104385, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272709

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family and plays a key role in the modulation of the B-cell receptor (BCR)-mediated signaling pathway. Inhibition of BTK has been proven to be an effective therapeutic approach for various hematological malignancies, such as chronic lymphocytic leukemia (CLL), mantle cell leukemia (MCL), diffuse large B-cell lymphoma (DLBCL) and acute myeloid leukemia (AML). Here, a new series of imidazole group-substituted arylaminopyrimidines (IAAPs) were designed and synthesized as potent inhibitors of the enzymatic activity of BTK with a half maximal inhibitory concentration (IC50) ranging from 13.10 to 42.40 nM. In particular, 11a and 11b exhibited stronger antiproliferative activity against AML and B lymphomas cell lines compared with BTK inhibitor ibrutinib and showed low cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). In addition, analysis of the mechanism of action of these compounds revealed that 11a and 11b induced significant apoptosis in AML and B lymphoma cells by arresting the cell cycle at the G1/G0 or G2/M stage and blocked BTK autophosphorylation as well as the ensuing abrogation of pro-survival AKT and ERK signaling. Taken together, these results suggest that 11a and 11b might serve as valuable preclinical candidates for the treatment of AML and B-cell lymphoma.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/farmacologia , Imidazóis/toxicidade , Leucemia Mieloide Aguda/enzimologia , Leucócitos Mononucleares/efeitos dos fármacos , Linfoma de Células B/enzimologia , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/síntese química , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos
17.
Exp Anim ; 70(2): 169-176, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33239495

RESUMO

Pazopanib is a tyrosine kinase inhibitor that is generally used for the treatment of metastatic renal cell cancer and advanced soft tissue sarcoma. It can cause various degrees of hepatotoxicity. Our study aimed to investigate the effect of taxifolin on pazopanib-induced liver toxicity. A total of 18 rats were divided into three groups: the pazopanib (PP), pazopanib plus taxifolin (TPP), and control (C) group. Taxifolin was administered to the TPP (n=6) group with a dose of 50 mg/kg. Distilled water was orally admnistered to the C (n=6) and PP (n=6) groups as a solvent. Subsequently, pazopanib 200 mg/kg was administered to the TPP and PP groups via the stomach. This procedure was repeated once a day for four weeks. Then, all rats were sacrificed, and their livers were removed. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS), and total antioxidant status (TAS) levels were evaluated. MDA and TOS levels were higher in the PP group compared with the levels of the other parameters (P<0.001). tGSH and TAS levels were lower in the PP group than in the TPP and C groups (P<0.001), and the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were higher. Furthermore, liver tissue damage, including hemorrhage, hydropic degeneration, and necrosis was observed in the PP group. Administration of taxifolin before pazopanib significantly improved degenerative changes. Our study demonstrated that the administration of taxifolin is significantly effective in preventing pazopanib-induced hepatotoxicity in rats.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Indazóis/toxicidade , Substâncias Protetoras/farmacologia , Pirimidinas/toxicidade , Quercetina/análogos & derivados , Sulfonamidas/toxicidade , Animais , Fígado/efeitos dos fármacos , Masculino , Quercetina/farmacologia , Ratos , Ratos Wistar
18.
Environ Toxicol ; 36(4): 562-571, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33226166

RESUMO

Azoxystrobin (AZO) and Iprodione (IPR) fungicides are extensively used worldwide, and therefore, contaminate all environmental compartments. The toxicity and the mechanisms by which they affected immune cells are complex and remain unknown. This study investigated the impact of AZO and IPR on the in vitro function of mice peritoneal macrophages including lysosomal enzyme activity and tumor necrosis factor (TNF)α and nitric oxide (NO) production in response to lipopolysaccharide (LPS) stimulation, the proliferation of mice splenocytes stimulated by concanavalin (Con)A and LPS, and the production of the Th1cytokine interferon-gamma (IFNγ) and the Th2 cytokine interleukin (IL)-4 and IL-10 by ConA-activated splenocytes. This is the first report indicating that AZO and IPR fungicides dose-dependently inhibited mice macrophage lysosomal enzyme activity and LPS-stimulated production of TNFα and NO. Mitogen-induced proliferation of mice splenocytes was also suppressed by AZO and IPR in a dose-dependent manner. More pronounced impact was observed on ConA-induced response. The production of IFNγ by ConA-stimulated splenocytes was dose-dependently inhibited; however, the production of IL-4 and IL-10 increased in the same conditions. These results suggested that AZO and IPR polarized Th1/Th2 cytokine balance towards Th2 response. Overall, marked immunosuppressive effects were observed for AZO. The immunomodulatory effects caused by AZO and IPR were partially reversed by the pharmacological antioxidant N-acetylcysteine (NAC), suggesting that both fungicides exerted their actions through, at least in part, oxidative stress-dependent mechanism. Collectively, our data showed that AZO and IPR fungicides exerted potent immunomodulatory effects in vitro with eventually strong consequences on immune response and immunologically based diseases.


Assuntos
Acetilcisteína/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Poluentes Ambientais/toxicidade , Fungicidas Industriais/toxicidade , Hidantoínas/toxicidade , Macrófagos Peritoneais , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Aminoimidazol Carboxamida/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia
19.
Biomed Res Int ; 2020: 2054293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195689

RESUMO

BACKGROUND: The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. METHODS: This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. RESULTS: mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 µM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST's activity in hypoxia both in vivo and in vitro. CONCLUSIONS: Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Glutamato-Amônia Ligase/genética , Hipóxia/enzimologia , Hipóxia/genética , Regulação para Cima/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Pirazóis/farmacologia , Pirazóis/toxicidade , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Ratos Sprague-Dawley
20.
Regul Toxicol Pharmacol ; 116: 104716, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619635

RESUMO

Pancreatic cancer is a leading cause of cancer-related deaths in the U.S. Ninety percent of patients with stage IV pancreatic cancer die within one year of diagnosis due to complications of metastasis. A metastatic potential of cancer cells has been shown to be closely associated with formation of perinucleolar compartment (PNC). Metarrestin, a first-in-class PNC inhibitor, was evaluated for its toxicity, toxicokinetics, and safety pharmacology in beagle dogs following every other day oral (capsule) administration for 28 days to support its introduction into clinical trials. The study consisted of four dose groups: vehicle; 0.25, 0.75 and 1.50 mg/kg/dose. Metarrestin reached its maximum concentration in blood at 3 h (overall median Tmax) across all doses with a mean t1/2 over 168 h of 55.5 h. Dose dependent increase in systemic exposure (Cmax and AUClast) with no sex difference was observed on days 1 and 27. Metarrestin accumulated from Day 1 to Day 27 at all dose levels and in both sexes by an overall factor of about 2.34. No mortality occurred during the dosing period; however, treatment-related clinical signs of toxicity consisting of hypoactivity, shaking/shivering, thinness, irritability, salivation, abnormal gait, tremors, ataxia and intermittent seizure-like activity were seen in both sexes at mid and high dose groups. Treatment-related effects on body weight and food consumption were seen at the mid and high dose levels. Safety pharmacology study showed no treatment-related effects on blood pressure, heart rate, corrected QT, PR, RR, or QRS intervals, or respiratory function parameters (respiratory rate, tidal volume, minute volume). There were no histopathological changes observed, with the exception of transient thymic atrophy which was considered to be non-adverse. Based primarily on clinical signs of toxicity, the No Observed Adverse Effect Level (NOAEL) in dogs was considered to be 0.25 mg/kg metarrestin after every other day dosing for 28 days with a mean of male and female Cmax = 82.5 ng/mL and AUClast = 2521 h*ng/mL, on Day 27.


Assuntos
Antineoplásicos , Pirimidinas , Pirróis , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Cães , Avaliação Pré-Clínica de Medicamentos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Nível de Efeito Adverso não Observado , Neoplasias Pancreáticas/tratamento farmacológico , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , Pirróis/administração & dosagem , Pirróis/farmacocinética , Pirróis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA